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Non-linear oscillations of an elliptical cylinder, that can rotate about an axis that passes through its symmetry axle
due to a torsional spring and hydrodynamic torque produced by the flow of a Newtonian fluid, were analysed in terms
of a single parameter that compares vortex shedding frequency with the torsional spring’s natural frequency. The
governing equations for the flow coupled with a rigid body with one degree of freedom, were solved numerically
using the Lattice Boltzmann Method (LBM). The Reynolds number used was Re = 200 which, in absence of torsional
spring, produces chaotic oscillations of the elliptical cylinder. When the torsional spring is included, we identified three
branches separated by transition regions when stiffness of the restorative torque change, as in the case of vortex induced
vibrations (VIV’s). However in this case, several regions presenting chaotic dynamics were identified. Two regions
with stable limit cycles were found when both torques synchronized and when stiffness of the torsional spring is big
enough so that the ellipse’s oscillation is small.

Dynamics of an oscillating elliptical cylinder due to flow
of a viscous fluid and torsional spring is presented. The
Reynolds number is fixed at Re = 200 and spring stiffness
is modified. We identified three regions: excitation, lock-
in and desynchronization regions as in the case of VIV’s
on circular cylinders. The problem has three fixed-points
whose properties depends on the ellipse’s oscillations de-
gree of confinement, which can be changed by varying the
spring’s stiffness.

I. INTRODUCTION

The study of fluid-solid interactions has been a problem of
great interest for a long time from varying points of views.
Vortex induced vibrations on solid structures as elastically
mounted cylinders1–3, ellipses4–6, flexible cylinders and ca-
bles7–9 are subjects of research in many fields of engineering
due to their wide range of practical applications. In addition,
from a mathematical point of view, the study of non-linear
phenomena due to flow of a viscous fluid around rigid bod-
ies when different numbers of degrees of freedom are con-
sidered10–12 and chaotic dynamics of the rigid body due to
the flow13–15, has attracted the attention of several researchers
because of modern development in computers and numerical
methods.

Movement of an elastically mounted cylinder is modeled
using linear and non-linear forced oscillators, depending on
the value of the so called reduced velocity1,2; a parameter that
compares vortex shedding frequency and the cylinder’s oscil-
lation frequency without flow. In such case when only transla-
tional degrees of freedom are considered, the cylinder’s move-
ment is modeled as a forced-damped oscillator in the lock-in
region, where amplitudes of oscillation transversal to the flow
direction are the largest1,2.

When rotational degrees of freedom are considered, move-
ment of the rigid body is due to an auto-rotation effect that
was originally studied by J. C. Maxwell in the 1890’s16 and

was later characterized by H. J. Lugt17,18. Vortex shedding
behind the body produces a torque that oscillates with time
and, depending on the Reynolds number, behaves as a non-
linear function of angular position, angular velocity and time.
Non-linear dynamics observed in 2D and 3D have been ana-
lyzed from different points of view; for instance in the design
of power extraction systems4 and the study of non-linear os-
cillators13,14.

In this work we present numerical solutions of the flow of a
viscous fluid around an elliptical cylinder that can rotate due
to external restorative torque, with stiffness k, and hydrody-
namic torque due to the flow. Reynolds number was fixed at
Re = 200 where oscillations of an elliptical cylinder without
restorative torque are known to be non-linear4,13.

A detailed analysis of cylinder and flow dynamics was
made as function of a single parameter, proportional to the
natural frequency of restorative torque. The problem shows
a similar behavior to that observed in cylinders with trans-
lational degrees of freedom: an excitation region where os-
cillation is periodic and a lock-in region where amplitude of
oscillation reaches maximum values. A third region can be
identified with a decoherence region, where amplitude of os-
cillation is diminished.

These regions are separated by transition regions and both
show different non-linear behavior and chaos. The transi-
tion between decoherence and lock-in regions is a chaotic re-
gion with an associated strange attractor. In the transition be-
tween excitation and lock-in regions, forced-damped periodic
oscillations were observed when k → ∞. Then, as k is di-
minished, the cylinder’s oscillations evolve into a limit cycle
through a region where the ellipse’s amplitude in each oscil-
lation changes erratically. Vorticity generated in the flow de-
pends on the elliptical cylinder’s degree of confinement which
is controlled with the spring’s stiffness.

This article is organized with the problem statement in sec-
tion II including a brief description of the numerical method.
In section III the most relevant results are presented and, in
section IV, we present a discussion of our main findings.
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II. PROBLEM STATEMENT

FIG. 1. Diagram of the problem. The flow around an elliptical cylin-
der that can rotate around its symmetry axis due to hydrodynamic
and restorative torques. The flow is considered to be uniform, with
velocity U far form the body, a and b are the minor and major axis of
the ellipse respectively and θ = θ(t) is the angle of rotation.

The problem consists on uniform flow of a Newtonian vis-
cous fluid, with mass density ρ and kinematic viscosity ν ,
around an elliptical cylinder that can rotate around its symme-
try axis due to hydrodynamic torque and is attached to a tor-
sional spring with constant stiffness k. The elliptical cylinder
has a mass density ρs, a and b are the semi-minor and semi-
major axes respectively and θ is angle of rotation, as shown
in Figure 1. We did not include structural damping to enforce
the ellipse’s oscillations in this work. The torsional spring’s
equilibrium angle is fixed at θe = 0.

In order to work with non dimensional variables, space is
scaled with b, velocities with velocity far from the body U ,
and times with b/U . With this choice, the problem is charac-
terized by four non dimensional parameters: Reynolds num-

ber Re = Ub
ν

, modified Strouhal number St =
√

k
I

b
U that com-

pares natural frequency of restorative torque with a scale of
the vortex shedding frequency, ratio between semi-major and
semi-minor axis α = b

a , ratio between solid and fluid mass
densities m∗ = ρs

ρ f
.

Considering u(r, t) and P(r, t) as non dimensional velocity
and pressure fields (pressure is scaled with characteristic vis-
cous pressure ρ f νU

b ), the governing equations for this problem
are given by

∇ ·u = 0, (1)

Re
(

∂u
∂ t

+u ·∇u
)
=−∇P+∇

2u, (2)

which correspond to non dimensional Navier-Stokes equa-
tions for an incompresible flow. Boundary conditions in this
case are

u(rs, t) = vs(rs, t), (3)
u(|r| → ∞, t) = î, (4)

where î is the unitary vector in the x direction, rs is a point
in the ellipse’s surface and vs(rs, t) its velocity. The above
conditions correspond to non-slip at the ellipse’s surface and

a uniform flow far from the body. Rotation of the ellipse is
solved using the Newton equation for torques given by

dω(t)
dt

=
τ

I∗
−S2

t (θ −θe), (5)

where I∗ = πm∗α(1+α2)/4 is a reduced moment of inertia
and dimensionless hydrodynamic torque is

τ =
1

ρ fU2a2

∫
S

k̂ · (rs−R)×σ · n̂dS. (6)

where R and ω(t) are the position of the ellipse’s center of
mass and angular velocity of rotation, respectively; σ repre-
sents the stress tensor of a Newtonian fluid.

A. Numerical Method

To find numerical solutions for the above problem we used
a two dimensional, nine neighbors (D2Q9) lattice-Boltzmann
model19. The proposed algorithm, that includes moving im-
mersed boundaries, has been validated in previous works11,20.

In this method space is discretized using a squared lattice.
Lattice spacing as well as time steps can be conveniently set
to unity. The fluid’s state at the node with vector position r at
time t, is described by the particle distribution function fk(r, t)
that evolves in time and space according to

fk(r+ ek, t +1) = fk(r, t)−
1
τ

[
fk(r, t)− f (eq)

k (r, t)
]
, (7)

where τ is a relaxation time related to the fluid’s kinematic
viscosity ν = (τ − 1/2)/3. Equilibrium distribution function
f (eq)
k is given by

f (eq)
k (r, t) = wkρ

(
1+3ek ·u+

9
2
(ek ·u)2− 3

2
u2
)
, (8)

which corresponds to a discrete Maxwell distribution func-
tion for thermal equilibrium. In the above expressions, macro-
scopic density and velocity fields are computed using

ρ(r, t) = ∑
k

fk(r, t) and ρu(r, t) = ∑
k

ek fk(r, t),

and microscopic velocities ek are given by

e0 = (0,0),
ek = (cos(π(k−1)/2),sin(π(k−1)/2)) ,

for k = 1, . . . ,4,

ek =
√

2(cos(π(k−9/2)/2),sin(π(k−9/2)/2)) ,
for k = 5, . . . ,8,

where w0 = 4/9, wk = 1/9 for k = 1, . . . ,4 and wk = 1/36
for k = 5, . . . ,8. Notice that, with this set of microscopic ve-
locities, expression (7) is always evaluated at lattice points.
It is well known that the above procedure approximates solu-
tions to the Navier-Stokes equations in the limit of small Mach
numbers19.
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Equation (7) provides an explicit algorithm for updating all
distribution functions fk at a given node in the lattice, as long
as its 8 nearest neighbouring nodes are inside the fluid’s do-
main. For nodes adjacent to a solid wall, distribution functions
coming from neighbouring nodes outside the fluid domain
must be provided. We chose the set of boundary conditions
proposed by Guo and Zheng in Ref.21 for curved rigid walls,
which approximately gives the no-slip boundary condition (3).
The force and torque acting on the body were computed using
the momentum-exchange method of Mei et. al. in Ref.22 and
then equation (5) is solved using a leap-frog method.

In order to simulate an infinite domain, a constant velocity
was enforced at the inlet whilst in the rest of the boundaries a
stress-free condition was implemented (see for details F. Man-
dujano and C. Málaga23). The domain’s size was chosen to be
big enough such that effects due to lateral walls were mini-
mized but the internal boundary could have enough number
of points. The numerical scheme was implemented to run in
parallel in Graphical Processor Units (GPU) due to the large
number of nodes involved in these simulations.

III. RESULTS

Simulations started with a uniform flow and the ellipse
fixed in space, until the fluid reached a time dependent flow
with vortex shedding. Then the solid, initially at θ(0) = θ0,
was allowed to rotate following equation (5). Aspect ratio
was fixed at α = 2 with m∗ = 1 and, as mentioned before, the
Reynolds number was fixed at Re = 200. Numerical experi-
ments were performed varying the modified Strouhal number
St .

FIG. 2. a) Rotational angle as function of time for different initial
conditions with St = 0. b) Phase space trajectories correspond to
those shown in (a), arrows indicate the trajectories’ starting point. c)
Vorticity field at two different times separated approximately by one
cycle.

In absence of restorative torque (St = 0), the hydrodynamic

torque oscillates with time in a non-periodic fashion with a
non-zero mean. Hence, for any choice of initial condition
θ0 (initial angular velocity is set to zero in all cases), the el-
lipse’s semi-mayor axis will oscillate around the vertical axis,
as shown in Fig. 2-(a). When θ0 is chosen in the neighbor-
hood of θ0 = 0, trajectories in phase space are expelled from
the origin and, as time grows, are attracted making open orbits
around either θc = π/2 or θc = −π/2 (see fig 2-(a)). The el-
liptical cylinder is then in an unstable equilibrium position and
starts to move due to auto-rotation17,24. We identified θs = 0
as a fixed-point that behaves as a saddle point (see Fig. 2-(b)).

Similarly, when θ0 =±π/2 much like spiral points trajecto-
ries in phase space are expelled outwards and also make open
orbits in phase space, as shown in Fig 2-(a) and (b). Time
signals for different initial conditions are qualitatively simi-
lar but are different showing sensitivity in initial conditions.
In any case, observed orbits oscillate inside a region around
the fixed-point. This region thins out as the Reynolds num-
ber decreases and converges into a stable limit cycle. Stability
properties of these three fixed-points depend on the Reynolds
number, θs = 0 is a saddle point as long as there is vortex shed-
ding behind the body. The other two fixed-points, θc =±π/2,
have an associated stable limit cycle at lower Reynolds num-
ber values.

According to Williamson and Roshko’s nomenclature25,
the wake produced in this regime is a 2S pattern. The vortices
shed in each cycle seem to organize in a von Kármán wake
close to the body, downstream vortex pairs interact with each
other changing their pattern, as shown in figure 2-(c) where
the elliptical cylinder at two points in time separated by one
cycle is shown. Even though the two points in time seem to be
similar, in each cycle the vorticity produced on the cylinder’s
surface changes slightly modifying the pattern downstream.

FIG. 3. a) Rotational angle as function of time for different initial
conditions with St = 0.4. b) Phase space trajectories correspond to
those shown in (a), arrows indicate the trajectories’ starting point. c)
Vorticity field at two different times separated approximately by one
cycle.

Similar results were found by Weymouth13, who studied a
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rotating ellipse towed with a constant velocity, when the axle
of rotation passed through its geometrical center. In our case,
the ellipse’s response is a non periodic oscillation with an am-
plitude that varies in a complicated manner; showing that hy-
drodynamic torque is a non-linear function that plays the role
of forcing and damping forces in the language of nonlinear
oscillators26. In VIV’s literature, hydrodynamic forces due to
vortex shedding processes are modeled as oscillatory periodic
functions of time1,2.

When torsional spring is included with its equilibrium po-
sition at θe = 0, there is a competition between restorative
and hydrodynamic torques. When 0 < St < 0.8, we found a
similar behavior to the one described above (see figure 3-(a)).
All initial conditions drive the elliptical cylinder to oscillate
around one of two fixed points ±θc that have moved towards
the point θs which is still a saddle point, as shown in figure
3-(b). As in the previous region, orbits are confined in regions
that thin out as the Reynolds number decreases. Mean ampli-
tude remains approximately constant within this region, while
the power spectral analysis of θ(t) shows several frequencies.
The highest peak in power spectral density for each experi-
ment (main frequency) is within the interval [U/b,2U/b] and
seems to change rather erratically due to the oscillation’s non
periodicity.

FIG. 4. a) Rotational angle as function of time for different initial
conditions with St = 0.84. b) Phase space trajectories correspond to
those shown in (a), the arrows indicate the trajectories’ starting point.
c) Vorticity field at two different times separated approximately by an
oscillation of the elliptical cylinder.

In contrast with the case when St = 0, symmetry proper-
ties of trajectories in phase space change. In the former case,
phase space trajectories are symmetric with respect to the ori-
gin. When St 6= 0, trajectories are skew-symmetric under a
reflection in θ(t). The elliptical cylinder rotates faster when
it moves away than when it moves towards the saddle point
θs. The vorticity field also shows different symmetrical prop-
erties, as shown in figure 3-(c), where the ellipse at approx-
imately the same angular position after one cycle is shown.

The vorticity generated at the cylinder’s surface is rather dif-
ferent from one cycle to the next. Form, behavior and the
way in which vortices interact with one another also change.
They are deflected in the cross-flow direction which results in
a wider wake.

FIG. 5. a) Rotational angle as function of time for different initial
conditions for St = 1.16. b) Phase space trajectories correspond to
those shown in (a), arrows indicate the trajectories’ starting point. c)
Vorticity field at two different times separated approximately by half
an oscillation of the elliptical cylinder.

When 0.5 ≤ St < 1.1 the ellipse starts to oscillate around
either θc or −θc depending on initial conditions as in the pre-
vious region. After a time interval, amplitude of oscillation
increases resulting in the elliptical cylinder being attracted to
the opposite fixed-point and starting to oscillate around it for
another time interval, and so on (see figure 4-(a)-(c)). Resi-
dence times, where the ellipse oscillates around either of the
fixed-points ±θc, seem to be distributed randomly. The two
fixed-points ±θc approach to θc = 0, as St gets close to one,
where they both merge with the saddle point to form what
seems to be a strange attractor. Dynamics are very similar to
the ones found with the Lorenz system and Duffing oscilla-
tor26. In figure 4-(c) the vorticity field is shown at two points
in time after one oscillation. In this case, it is found that shed
vorticity differs and vortex pairs are further deflected verti-
cally downstream compared to the previous region.

For 1.1 < St < 1.2 (shedding and spring frequencies are ap-
proximately the same) we found stable limit cycles, as shown
in figure 5-(a) and (b). Observed θ(t) frequencies are approx-
imately U/2b, half the shedding frequency, and amplitude of
oscillation reaches its maximum values. Both lift and torque
oscillate within the the same frequency as θ(t) and drag co-
efficient with shedding frequency U/b. Now, the only fixed-
point seems to be θs = 0 with a skew-symmetric stable limit
cycle. Vorticity field is a 2P+2S wake, as shown in figure 5-(c)
where we show two points in time separated by half a cycle of
the ellipse’s rotation.

Notice that for each half a cycle, two structures are shed:
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FIG. 6. a) Rotational angle as function of time for different initial
conditions for St = 1.68. b) Phase space trajectories correspond to
those shown in (a), arrows indicate trajectories’ starting point. c)
Vorticity field at two different times separated approximately by an
oscillation of the elliptical cylinder.

a vortex dipole-like pair and a single one. The vortex pair is
composed of two vortices with different strengths, the least
intense one dissipates just before being shed and the most in-
tense is dragged towards the center line. The single vortex
shed travels to one side of the rest of the dipole-like vortex.
The wake seems to be an internal inverted von Kármán street
with an external one as shown in figure 5-(c).

As St is increased outside the previous region, orbits oscil-
late around a thicker region and the rotational angle loses its
periodicity with amplitudes that vary from one cycle to the
next by small amounts, as can be appreciated in figure 6-(a).
In figure 6-(b) three types of trajectories are shown with dif-
ferent initial conditions. When the initial condition is ±θ0
( 6= 0) we found two skew-symmetric solutions and, when the
initial condition is close to θ0 = 0, solutions found seem to be
a combination of the first two. Hence, even when it seems that
fixed-points collapse at the saddle point position θs, influence
of the two fixed-points±θc can still be seen, which shows that
basins of attraction are divided into at least three regions.

Vorticity fields are made by 2S patterns, as in von Kár-
mán wake, however, when angular velocity has changes as
θ(t) approaches the saddle point (see figure 6-(b)) vortices are
shed with slightly different amplitudes that modify the pattern
downstream, as shown in figure 6-(c). In contrast with the
initial region, where the amplitudes of oscillation around ei-
ther of the fixed-points±θc remain approximately constant, in
this region amplitude of oscillation rapidly decreases and, at
some value of St , reaches a minimum value and a limit cycle is
found. The cylinder’s oscillations in this region are both very
small and periodic with a frequency of two times the shedding
frequency U/b.

Figure 7 shows the root mean square of the angle of rota-
tion as a function of St . As mentioned before, for small val-

FIG. 7. a) Root mean square of θ(t) as function of St . b) Evolution
of ±θc as function of St

ues of St , cylinder trajectories in phase space seem chaotic,
variations in mean amplitudes of oscillation are small and re-
main approximately constant as St grows. At some value of
St , there is a transition where bigger oscillations are found,
which correspond to time intervals when the cylinder passes
from oscillating around one fixed-point to the other (shaded
region in figure 7-(a)). Liapunov coefficients in these two re-
gions are positive and have approximately the same value of
λ ∼ 0.1. The differences in initial conditions used to compute
λ were 10−7.

Evolution of fixed-points is shown in figure 7-(b). The start-
ing point is θc =±π/2 for St = 0 and then θc decreases mono-
tonically as St grows. In the region of transition where the
cylinder changes from chaotic oscillations around either of the
fixed-points ±θc to chaotic oscillations changing form one to
the other intermittently, the behavior seems to follow the same
trend. When St ∼ 1 fixed-points jump and merge with the sad-
dle point at θs = 0, marking the transition’s boundary.

The cylinder’s amplitude of oscillation reaches its maxi-
mum when 1 < St < 1.2, a tiny region where we found a sta-
ble limit cycle. The only fixed-point is at θs = 0, as shown
in figure 7, the other two points collapse with θs. However,
their influence is still seen in the skew-symmetric phase space
trajectories. As St is increased, Aθ starts to decrease mono-
tonically and phase space trajectories change their geometry,
showing the influence of two fixed-points associated with hy-
drodynamic torque. When St ∼ 1.6, amplitude Aθ decrease
faster and becomes small but different from zero and remains
constant. Trajectories in phase space are ellipses, oscillation
is harmonic and, when St → ∞, the only fixed-point becomes
an attractor.

IV. DISCUSSION

Non-linear oscillations of an elliptical cylinder that rotates
around its axle due to flow of a Newtonian viscous fluid and a
restorative force are discussed. When the only torque on the
elliptical cylinder is due to fluid flow, the ellipse’s major-axis
oscillates around the axis in the cross-flow direction. Without
fluid flow, the ellipse rotates harmonically around θ = 0 with
a frequency of

√
k/I. Reynolds number used was Re = 200
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where it is known that hydrodynamic torque produces non-
linear oscillations. We used St as a central parameter, which
results from a comparison between the characteristic vortex
shedding U/b and spring

√
k/I frequencies.

FIG. 8. Bifurcation diagram. The values of τn are such that ω(τn) =
0. Colors represent different initial conditions.

Results found showed similar behavior to vortex induced
vibrations (VIV) around a circular cylinder with two and three
degrees of freedom1,8,11,27. Behavior of oscillation amplitudes
in the cross-flow direction is classified into three regions as
a function of reduced velocity, which is proportional to the
inverse of St . The excitation region is where the cross-flow
amplitude of oscillation is small but starts to increase. The
lock-in and desynchronization regions are regions where the
cross-flow amplitude reaches its maximum and begins to de-
crease, respectively.

In our case, the excitation branch can be identified as the re-
gion when St > 1.8, as shown in figure 8, where a bifurcation
diagram for this problem is portrayed. The fixed-point θs = 0
behaves as an attractor when St→∞ (not shown on bifurcation
diagram). Hydrodynamic torque works as a damping term in
equation (5) since every initial condition leads the ellipse to
a rest, as in a damped pendulum. As St decreases, the ellipse
starts to oscillate periodically with a period of 2b/U and an
amplitude that remains approximately constant, similar to a
forced damped pendulum.

The excitation branch is followed by an abrupt growing of
amplitudes of oscillation which lead to the lock-in branch,
where the cross-flow amplitude reaches its maximum. In
our case, as St decreases, amplitude starts to grow abruptly
and reaches a maximum where we found a stable limit cycle.
Around the maxima, we found a region where oscillation is
periodic, which we identified as the lock-in region. Transi-
tion between excitation and lock-in regions occurs in a region
where the stable limit cycle evolves in a new structure influ-
enced by two fixed-points at ±θc. Amplitude reached at each
oscillation varies, producing asymmetries in the branches of
the parabola-like curve in figure 8. As St decreases, observed
variations in amplitude diminishes and reaches zero. As St
approaches one, amplitudes collapse to a single value with a
more uniform growth than in the transition region.

After the lock-in branch, the stable limit cycle evolves in
what seems to be a strange attractor (shaded region in figure

8). Even when it seems that amplitudes of θ(t) still explore a
wide range of values, amplitude of oscillation decreased since
the ellipse oscillates intermittently about either θc or−θc. Af-
ter the transition region, amplitudes of oscillation remain ap-
proximately constant and fixed-points ±θc increase towards
±π/2 as St approaches zero. We identified this region as the
desynchronization zone. However, in our case, the ellipse’s
oscillation is non-periodic and its amplitude is larger than in
the excitation branch.

Within the transition region the ellipse oscillates intermit-
tently around fixed-points ±θc. In the language of VIV’s on
circular cylinders, this region of transition is identified with
a hysteresis process, meaning that it is different to go from
the excitation region to the lock-in region than the other way
around1,8,28. There is also evidence in 2D numerical simula-
tions that transition between these two regions can be made
following different paths by changing the set of initial condi-
tions, because there are several coexisting solutions between
the excitation region and the lock-in branch11.

The system under consideration shows a close behavior
with the problem of VIV’s with 2 degrees of freedom in a
sense that similar regions or branches can be identified. How-
ever, in this case, we only found periodic solutions in a small
region (identified as the lock-in branch) and when St → ∞

which corresponds to a fixed ellipse. When St = 0 the ellipse’s
oscillation is chaotic due to the non-linear nature of hydrody-
namic torque. As St is increased, degree of confinement in
cylinder movement is modified and shed vorticity changes,
which is due to a competition between hydrodynamic and
restorative torques. Therefore, only when both torques syn-
chronize or the movement is confined to very small oscilla-
tions, obtained solutions are periodic. In the rest of analyzed
regions, the hydrodynamic torque dominates the flow and the
ellipse’s oscillation shows chaotic dynamics. For a future
works, we will be extending the study to ellipses with three
degrees of freedom and will include other bodies, to study
solid-fluid-solid hydrodynamic interactions.

V. AUTHOR DECLARATION

The authors have no conflicts to disclose.

VI. DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

1C. H. K. Williamson and R. Govardhan, “Vortex-induced vibrations,” Annu.
Rev. Fluid Mech. 36, 413–455 (2004).

2T. Sarpkaya, “A Critical review of the intrinsic nature of vortex-induced
vibrations,” J. Fluids Struct. 19, 389–447 (2004).

3P. W. Bearman, “Vortex shedding from oscillating bluff bodies,” Rev. Fluid
Mech. 16, 195–222 (1984).

4A. Bhattacharya and S. S. Sorathiya-Shahajhan, “Power extration form
vortex-induced angular oscillations of elliptical cylinder,” Journal of Flu-
ids and Structures. 63, 140–154 (2016).



Chaotic VIR’s on a elliptical cylinder 7

5M. Abu Shahzer, M. Athar Khan, S. Fahad Anwer, S. Anwar Khan,
M. Shoaib Khan, A. Algethami, and A. M., “A comprehensive investi-
gation of vortex-induced vibrations and flow-induced rotation of an elliptic
cylinder,” Phys. Fluids 34, 033605 (2022).

6Navrose, V. Yogeswaran, S. Sen, and S. Mittal, “Free vibrations of an
elliptic cylinder at low reynolds numbers,” Journal of Fluids and Structures
51, 55–67 (2014).

7D. J. Newman and G. E. Karnidakis, “A direct numerical simulation study
of flow past a freely vibrating cable,” J. Fluid Mech. 344, 95–136 (1997).

8D. Brika and A. Laneville, “Vortex-induced vibrations of a long flexible
circular cylinder,” J. Fluid Mech. 250, 481–508 (1993).

9C. T. Yamamoto, J. R. Meneghini, F. Saltara, R. A. Fregonesi, and J. A. Fer-
rari, “Numerical simulations of vortex-induced vibration on flexible cylin-
ders,” Journal of Fluids and Structures. 19, 467–489 (2004).

10N. Jauvtis and C. H. K. Williamson, “Vortex-induced vibration of a cylinder
with two degrees of freedom,” J. Fluids Struct. 17, 1035–1042 (2003).

11M. Reyes and F. Mandujano, “Vortex induced vibrations of a cylinder at
low mass ratio,” Eur. J. Mech. /B Fluids 91, 66–79 (2022).

12J. M. Dahl, M. S. Hover, and M. S. Triantafyllou, “Two-degree-of-freedom
vortex-induced vibrations using a force assisted apparatus,” Journal of Flu-
ids and Structures. 22, 807–818 (2006).

13G. D. Weymouth and D. K. P. Yue, “Boundary data immersion method for
cartesian-grid simulations of fluid-body interaction problems,” J. Comput.
Phys. 230, 6233–6247 (2011).

14T. Rosén, “Chaotic rotation of a spheroidal particle in simple shear flow,”
Chaos 27, 063112 (2017).

15J. Zhao, D. L. J. Leontini, and S. J., “Chaotic vortex induced vibrations,”
Physics of Fluids 26, 121702 (2014).

16J. C. Maxwell, “On a particular case of the descent of a heavy body in a
resisting medium,” in The Scientific Papers of James Clerk Maxwell, Cam-

bridge Library Collection - Physical Sciences, Vol. 1 (Cambridge Univer-
sity Press, 2011) p. 115–118.

17H. J. Lugt, “Autorotation of an elliptic cylinder about an axis perpendicular
to the flow,” J. Fluid Mech. 94-4, 817–840 (1980).

18H. J. Lugt, “Autorotation,” Annual Review of Fluid Mechanics 15, 123–147
(1983), https://doi.org/10.1146/annurev.fl.15.010183.001011.

19X. He, S. Chen, and G. D. Doolen, “A Novel Thermal Model for the Lat-
tice Boltzmann Method in Incompressible Limit,” Journal of Computational
Physics 146, 282–300 (1998).

20M. Mandujano and C. Málaga, “On the forced flow around a rigid flapping
foil,” Phys. Fluids 30, 061901 (2018).

21Z. Guo and C. Zheng, “An extrapolation method for boundary conditions
in lattice Boltzmann method,” Phys. Fluids 14, 2007–2010 (2002).

22R. Mei, D. Yu, W. Shyy, and L. Luo, “Force evaluation in the lattice Boltz-
mann method involving curved geometry,” Phys. Rev. E 65, 041203 (2002).

23M. Mandujano and R. Rechtman, “Thermal levitation,” J. Fluid Mech. 606,
105–114 (2008).

24G. D. Weymouth, “Chaotic rotation of a towed elliptical cylinder,” J. Fluid
Mech. 743, 385–398 (2014).

25C. H. K. Williamson and A. Roshko, “Vortex formation in the wake of an
oscillating cylinder,” J. Fluids Struct. 2, 355–381 (1988).

26J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Sys-
tems, and Bifurcations of Vector Fields, Applied Mathematical Sciences
(Springer New York, 2013).

27R. Govardhan and C. H. K. Williamson, “Modes of vortex formation and
frequency response of a freely vibrating cylinder,” J. Fluid Mech. 420, 85–
130 (2000).

28S. Singh and S. Mittal, “Vortex-induced oscillations at low Reynolds num-
bers: Hysteresis and vortex-shedding modes.” Journal of Fluids and Struc-
tures. , 1085–1104 (2005), 2005. 20(8): p.


